
SW-Devlopment-LifeCycle.hwp 1/10

The Software Development Life Cycle

(SDLC): 7 Phases and 5 Models

QUICK SUMMARY

Building software is a huge job, which is why digital product teams

rely on the software development life cycle (SDLC). Here's what you

need to know.

Building software is a huge job, which is why digital product teams

rely on the software development life cycle (SDLC). The SDLC usually

takes the form of one of 5 different methodologies and follows 7 main

development stages. Knowing what needs to be done in the SDLC

process can help product managers guide the entire project to

completion. It also helps PMs understand the milestones and

communicate progress to stakeholders. Let’s jump in!

What is the SDLC?

The software development life cycle is a process that development

teams use to create awesome software that's top-notch in terms of

quality, cost-effectiveness, and time efficiency. The main goal is to

minimize risks and make sure the software meets the customer's

expectations both during and after production.

This process is about creating a detailed plan to guide the

development of the product and then breaking down the development

process into smaller modules that can be assigned, completed, and

measured to make the whole thing more manageable.

Benefits of SDLC for the Product Team

Managing changing requirements, staying on top of new technology,

and working collaboratively can be challenging for the product team.

That's where the SDLC comes in handy. The SDLC provides a

framework for the product team to manage the development process

systematically, with clear goals and deliverables at every stage. By

using SDLC, the product team can ensure that all stakeholders agree

on software development goals and requirements upfront and have a

plan to achieve them.

Here are some specific benefits of using SDLC for the product team:

SW-Devlopment-LifeCycle.hwp 2/10

*Increased visibility of the development process for all stakeholders

involved

*More efficient estimation, planning, and scheduling

*Improved risk management and cost estimation

*A systematic approach to delivering software that meets customer

expectations and improves satisfaction

SW-Devlopment-LifeCycle.hwp 3/10

The 7 Phases of the Software

Development Life Cycle

The SDLC process will look a little different for every team and

product. However, these are the stages that most SDLC frameworks

have in common:

The software development life cycle can be an iterative process.

1. Planning & Analysis

The first phase of the SDLC is the project planning stage where you

are gathering business requirements from your client or stakeholders.

This phase is when you evaluate the feasibility of creating the

product, revenue potential, the cost of production, the needs of the

end-users, etc.

To properly decide what to make, what not to make, and what to

make first, you can use a feature prioritization framework that takes

into account the value of the software/update, the cost, the time it

takes to build, and other factors.

Once it is decided that the software project is in line with business

and stakeholder goals, feasible to create, and addresses user needs,

then you can move on to the next phase.

2. Define Requirements

SW-Devlopment-LifeCycle.hwp 4/10

This phase is critical for converting the information gathered during

the planning and analysis phase into clear requirements for the

development team. This process guides the development of several

important documents: a software requirement specification (SRS), a

Use Case document, and a Requirement Traceability Matrix document.

3. Design

The design phase is where you put pen to paper—so to speak. The

original plan and vision are elaborated into a software design

document (SDD) that includes the system design, programming

language, templates, platform to use, and application security

measures. This is also where you can flowchart how the software

responds to user actions.

In most cases, the design phase will include the development of a

prototype model. Creating a pre-production version of the product can

give the team the opportunity to visualize what the product will look

like and make changes without having to go through the hassle of

rewriting code.

4. Development

The actual development phase is where the development team

members divide the project into software modules and turn the

software requirement into code that makes the product.

This SDLC phase can take quite a lot of time. It’s important to have

a set timeline and milestones so the software developers understand

the expectations and you can keep track of the progress in this stage.

In some cases, the development stage can also merge with the testing

stage where certain tests are run to ensure there are no critical bugs.

5. Testing

Before getting the software product out the door to the production

environment, it’s important to have your quality assurance team

perform validation testing to make sure it is functioning properly and

does what it’s meant to do. The testing process can also help hash

out any major user experience issues and security issues.

In some cases, software testing can be done in a simulated

environment. Other simpler tests can also be automated.

The types of testing to do in this phase:

SW-Devlopment-LifeCycle.hwp 5/10

*Performance testing: Assesses the software's speed and scalability

under different conditions

*Functional testing: Verifies that the software meets the

requirements

*Security testing: Identifies potential vulnerabilities and

weaknesses

*Unit-testing : Tests individual units or components of the

software

*Usability testing: Evaluates the software's user interface and

overall user experience

*Acceptance testing: Also termed end-user testing, beta testing,

application testing, or field testing, this is the

final testing stage to test if the software product

delivers on what it promises

6. Deployment

During the deployment phase, your final product is delivered to your

intended user. You can automate this process and schedule your

deployment depending on the type. For example, if you are only

deploying a feature update, you can do so with a small number of

users (canary release). If you are creating brand-new software, you

can learn more about the different stages of the software release life

cycle (SRLC).

7. Maintenance

The maintenance phase is the final stage of the SDLC if you’re

following the waterfall structure of the software development process.

However, the industry is moving towards a more agile software

development approach where maintenance is only a stage for further

improvement.

In the maintenance stage, users may find bugs and errors that were

missed in the earlier testing phase. These bugs need to be fixed for

better user experience and retention. In some cases, these can lead to

going back to the first step of the software development life cycle.

The SDLC phases can also restart for any new features you may want

to add in your next release/update.

SW-Devlopment-LifeCycle.hwp 6/10

Common SDLC Models

In software development, there are various frameworks, or “models,”

of the Software Development Lifecycle (SDLC), which arrange the

development process in different ways. These models help

organizations implement SDLC in an organized way. Here are some of

the most commonly used software life cycle models.

1. Agile Model

This model arranges the SDLC phases into several development

cycles, with the team delivering small, incremental software changes

in each cycle. The Agile methodology is highly efficient, and rapid

development cycles help teams identify issues early on, but

overreliance on customer feedback could lead to excessive scope

changes or project termination. It's best for software development

projects that require flexibility and the ability to adapt to change over

time.

2. Waterfall Model

This model arranges all the phases sequentially, with each new phase

depending on the outcome of the previous one. It provides structure to

project management, but there is little room for changes once a phase

is complete, so it's best for small, well-defined projects.

3. Iterative Model

With this model, the team begins development with a small set of

requirements and iteratively enhances versions until the software is

ready for production. It's easy to manage risks, but repeated cycles

could lead to scope change and underestimation of resources. This

model is best for projects that require high flexibility in their

requirements and have the resources to handle multiple iterations.

4. Spiral Model

This model combines the iterative model's repeated cycles with the

waterfall model's linear flow to prioritize risk analysis. It's best for

complex projects with frequent changes but can be expensive for

smaller projects.

5. Big Bang Model

The Big Bang Model is a unique approach where developers jump right

into coding without much planning. This means that requirements are

implemented as they come, without any kind of clear roadmap. If

SW-Devlopment-LifeCycle.hwp 7/10

changes are needed, it can require a complete revamp of the software.

While this model isn't great for larger projects, it’s best for academic

or practice projects, or smaller projects with only one or two

developers. Essentially, it's a model that works well when

requirements aren't well understood and there's no set release date in

sight.

SW-Devlopment-LifeCycle.hwp 8/10

SDLC vs Other Lifecycle Management

Methodologies

As you may know, SDLC is not the only lifecycle management process

in the glossary of product management terms. Here are some similar

terms and what distinguishes them from the SDLC:

SDLC vs. ALM (Application lifecycle management)

ALM is a term that describes the creation and maintenance of software

applications, from ideation to design, development, testing, production,

support, and eventual retirement. Sound a lot like SDLC? They might

appear similar on paper, but some key differences include:

*SDLC focuses on the development phase of an application, while

ALM takes a more comprehensive approach, covering the

entire lifecycle of the application.

*Multiple ALM tools, processes, and teams need to work together to

manage different stages of the application, including

development.

*There may be multiple SDLCs within an application's lifecycle that

fall under the larger ALM framework.

SDLC vs. systems development lifecycle

Sometimes, people use the term SDLC to refer to the systems

development lifecycle, which is the process of planning and creating

an IT system. This system typically consists of multiple hardware and

software components that work together to perform complex functions.

So, what’s the difference?

*SDLC only covers the development and testing of software

components

*Systems development is a broader process that encompasses the setup

and management of hardware, software, people, and processes

needed for a complete system.

*While SDLC focuses on the software product only, systems

development can include tasks like organizational training and

change management that aren't necessarily part of software

development.

SDLC vs STLC (Software Testing Lifecycle)

You might have also heard about the software testing lifecycle

(STLC). The STLC refers to the set of activities that ensure software

SW-Devlopment-LifeCycle.hwp 9/10

quality by detecting bugs and defects before the product release. It

has phases similar to the SDLC but with different objectives and

deliverables.

There are several key differences between SDLC and STLC, such as:

*SDLC is focused on software development, while STLC is focused on

software testing.

*SDLC aims to build a software product that meets the user

requirements, while STLC aims to ensure that the software is

bug-free and reliable.

*SDLC consists of various phases, such as planning, design, coding,

testing, and deployment, while STLC has different phases,

such as test planning, test case development, test execution,

and test closure.

MORE ARTICLES

* How to Create More Intuitive Experiences: The Smartest UX Design

Research Process

* 7 Growth Hacking Examples To Steal For Your Strategy

* 7 Deadly Sins Of Product Design (And How To Avoid Them)

SDLC vs DevOps

Another buzzword in the software development industry is DevOps.

DevOps is a set of practices that combines software development

(Dev) and IT operations (Ops) to enable faster and more frequent

software delivery. It involves collaboration, automation, and

monitoring throughout the software development lifecycle.

Here are the distinctions between SDLC and DevOps:

*SDLC is a methodology for managing software development, while

DevOps is a cultural shift that promotes collaboration

between development and operations teams.

*SDLC focuses on delivering software that meets the user

requirements, while DevOps focuses on delivering software

that meets the business objectives.

*SDLC involves different phases, such as planning, design, coding,

testing, and deployment, while DevOps involves continuous

integration, continuous delivery, and continuous monitoring.

SDLC vs PDLC (Product development lifecycle)

The product development lifecycle (PDLC) is a comprehensive process

that covers the entire lifecycle of a product, from ideation to

SW-Devlopment-LifeCycle.hwp 10/10

retirement. It includes product planning, market research, product

design, development, testing, launch, marketing, and support.

Here are some key differences between SDLC and PDLC:

*SDLC is focused on software development, while PDLC is focused on

product development.

*SDLC consists of various phases, such as planning, design, coding,

testing, and deployment, while PDLC includes additional

phases, such as market research, product planning, and

marketing.

*SDLC aims to build software that meets the user requirements, while

PDLC aims to build a product that meets the market needs and

generates revenue.

SDLC vs SRLC (Software Release Life Cycle)

The software requirements lifecycle (SRLC) is a process that focuses

on gathering, documenting, and validating software requirements. It

includes eliciting requirements from stakeholders, analyzing and

prioritizing them, documenting them in a requirements specification,

and validating them.

Here are some key differences between SDLC and SRLC:

*SDLC is focused on software development, while SRLC is focused on

software requirements management.

*SDLC consists of various phases, such as planning, design, coding,

testing, and deployment, while SRLC includes additional

phases, such as requirements elicitation, analysis, and

validation.

*SDLC aims to build software that meets the user requirements, while

SRLC aims to ensure that the software requirements are

complete, correct, and unambiguous before development

starts.

